import pandas as pd
import numpy as np
df = pd.DataFrame(np.random.randint(0,100,size=(100, 4)), columns=list('ABCD'))
#%%
"""
iterrows()
"""
for index, row in df.iterrows():
print(row['A'], row['B'])
#%%
"""
itertuples()
"""
for row in df.itertuples():
print(row.A, row.B)
#%%
"""
iteritems()
"""
for col, value in df.iteritems():
print(col, value)
#%%
"""
apply()
"""
df.apply(np.sum)
#%%
"""
applymap()
"""
df.applymap(lambda x: x*100)
#%%
"""
map()
"""
df['A'].map(lambda x: x*100)
#%%
"""
apply()
"""
df.apply(np.sum, axis=1)
#%%
"""
apply()
"""
df.apply(lambda x: x.max() - x.min())
#%%
"""
apply()
"""
df.apply(lambda x: x.max() - x.min(), axis=1)
#%%
"""
apply()
"""
df.apply(lambda x: pd.Series([x.min(), x.max()], index=['min', 'max']))
#%%
"""
apply()
"""
df.apply(lambda x: pd.Series([x.min(), x.max()], index=['min', 'max']), axis=1)
#%%
"""
apply()
"""
df.apply(lambda x: pd.Series([x.min(), x.max()], index=['min', 'max']), axis=1).stack()
#%%
"""
apply()
"""
df.apply(lambda x: pd.Series([x.min(), x.max()], index=['min', 'max']), axis=1).unstack()
#%%
"""
apply()
"""
df.apply(lambda x: pd.Series([x.min(), x.max()], index=['min', 'max']), axis=1).unstack().reset_index()
#%%
"""
apply()
"""
df.apply(lambda x: pd.Series([x.min(), x.max()], index=['min', 'max']), axis=1).unstack().reset_index(drop=True)
#%%
"""
apply()
"""
df.apply(lambda x: pd.Series([x.min(), x.max()], index=['min', 'max']), axis=1).unstack().reset_index(drop=True).rename(columns={0:'min', 1:'max'})
#%%
"""
apply()
"""
df.apply(lambda x: pd.Series([x.min(), x.max()], index=['min', 'max']), axis=1).unstack().reset_index(drop=True).rename(columns={0:'min', 1:'max'}).assign(range=lambda x: x['max'] - x['min'])
#%%
"""
apply()
"""
df.apply(lambda x: pd.Series([x.min(), x.max()], index=['min', 'max']), axis=1).unstack().reset_index(drop=True).rename(columns={0:'min', 1:'max'}).assign(range=lambda x: x['max'] - x['min']).drop(columns=['min', 'max'])
#%%
"""
apply()
"""
df.apply(lambda x: pd.Series([x.min(), x.max()], index=['min', 'max']), axis=1).unstack().reset_index(drop=True).rename(columns={0:'min', 1:'max'}).assign(range=lambda x: x['max'] - x['min']).drop(columns=['min', 'max']).rename(columns={'range':'range_A'})
#%%
"""
apply()
"""
df.apply(lambda x: pd.Series([x.min(), x.max()], index=['min', 'max']), axis=1).unstack().reset_index(drop=True).rename(columns={0:'min', 1:'max'}).assign(range=lambda x: x['max'] - x['min']).drop(columns=['min', 'max']).rename(columns={'range':'range_A'}).assign(range_B=lambda x: x['range_A']*100)
#%%
"""
apply()
"""
df.apply(lambda x: pd.Series([x.min(), x.max()], index=['min', 'max']), axis=1).unstack().reset_index(drop=True).rename(columns={0:'min', 1:'max'}).assign(range=lambda x: x['max'] - x['min']).drop(columns=['min', 'max']).rename(columns={'range':'range_A'}).assign(range_B=lambda x: x['range_A']*100).drop(columns=['range_A'])
#%%
"""
apply()
"""
df.apply(lambda x: pd.Series([x.min(), x.max()], index=['min', 'max']), axis=1).unstack().reset_index(drop=True).rename(columns={0:'min', 1:'max'}).assign(range=lambda x: x['max'] - x['min']).drop(columns=['min', 'max']).rename(columns={'range':'range_A'}).assign(range_B=lambda x: x['range_A']*100).drop(columns=['range_A']).rename(columns={'range_B':'range'})
#%%
"""
apply()
"""
df.apply(lambda x: pd.Series([x.min(), x.max()], index=['min', 'max']), axis=1).unstack().reset_index(drop=True).rename(columns={0:'min', 1:'max'}).assign(range=lambda x: x['max'] - x['min']).drop(columns=['min', 'max']).rename(columns={'range':'range_A'}).assign(range_B=lambda x: x['range_A']*100).drop(columns=['range_A']).rename(columns={'range_B':'range'}).assign(range_C=lambda x: x['range']*100)
#%%
"""
apply()
"""
df.apply(lambda x: pd.Series([x.min(), x.max()], index=['min', 'max']), axis=1).unstack().reset_index(drop=True).rename(columns={0:'min', 1:'max'}).assign(range=lambda x: x['max'] - x['min']).drop(columns=['min', 'max']).rename(columns={'range':'range_A'}).assign(range_B=lambda x: x['range_A']*100).drop(columns=['range_A']).rename(columns={'range_B':'range'}).assign(range_C=lambda x: x['range']*100).drop(columns=['range'])
#%%
"""
apply()
"""
df.apply(lambda x: pd.Series([x.min(), x.max()], index=['min', 'max']), axis=1).unstack().reset_index(drop=True).rename(columns={0:'min', 1:'max'}).assign(range=lambda x: x['max'] - x['min']).drop(columns=['min', 'max']).rename(columns={'range':'range_A'}).assign(range_B=lambda x: x['range_A']*100).drop(columns=['range_A']).rename(columns={'range_B':'range'}).assign(range_C=lambda x: x['range']*100).drop(columns=['range']).rename(columns={'range_C':'range'})
#%%
"""
apply()
"""
df.apply(lambda x: pd.Series([x.min(), x.max()], index=['min', 'max']), axis=1).unstack().reset_index(drop=True).rename(columns={0:'min', 1:'max'}).assign(range=lambda x: x['max'] - x['min']).drop(columns=['min', 'max']).rename(columns={'range':'range_A'}).assign(range_B=lambda x: x['range_A']*100).drop(columns=['range_A']).rename(columns={'range_B':'range'}).assign(range_C=lambda x: x['range']*100).drop(columns=['range']).rename(columns={'range_C':'range'}).assign(range_D=lambda x: x['range']*100)
#%%
"""
apply()
"""
df.apply(lambda x: pd.Series([x.min(), x.max()], index=['min', 'max']), axis=1).unstack().reset_index(drop=True).rename(columns={0:'min', 1:'max'}).assign(range=lambda x: x['max'] - x['min']).drop(columns=['min', 'max']).rename(columns={'range':'range_A'}).assign(range_B=lambda x: x['range_A']*100).drop(columns=['range_A']).rename(columns={'range_B':'range'}).assign(range_C=lambda x: x['range']*100).drop(columns=['range']).rename(columns={'range_C':'range'}).assign(range_D=lambda x: x['range']*100).drop(columns=['range'])
#%%
"""
apply()
"""
df.apply(lambda x: pd.Series([x.min(), x.max()], index=['min', 'max']), axis=1).unstack().reset_index(drop=True).rename(columns={0:'min', 1:'max'}).assign(range=lambda x: x['max'] - x['min']).drop(columns=['min', 'max']).rename(columns={'range':'range_A'}).assign(range_B=lambda x: x['range_A']*100).drop(columns=['range_A']).rename(columns={'range_B':'range'}).assign(range_C=lambda x: x['range']*100).drop(columns=['range']).rename(columns={'range_C':'range'}).assign(range_D=lambda x: x['range']*100).drop(columns=['range']).rename(columns={'range_D':'range'})
#%%
"""
apply()
"""
df.apply(lambda x: pd.Series([x.min(), x.max()], index=['min', 'max']), axis=1).unstack().reset_index(drop=True).rename(columns={0:'min', 1:'max'}).assign(range=lambda x: x['max'] - x['min']).drop(columns=['min', 'max']).rename(columns={'range':'range_A'}).assign(range_B=lambda x: x['range_A']*100).drop(columns=['range_A']).rename(columns={'range_B':'range'}).assign(range_C=lambda x: x['range']*100).drop(columns=['range']).rename(columns={'range_C':'range'}).assign(range_D=lambda x: x['range']*100).drop(columns=['range']).rename(columns={'range_D':'range'}).assign(range_E=lambda x: x['range']*100)
#%%
"""
apply()
"""
df.apply(lambda x: pd.Series([x.min(), x.max()], index=['min', 'max']), axis=1).unstack().reset_index(drop=True).rename(columns={0:'min', 1:'max'}).assign(range=lambda x: x['max'] - x['min']).drop(columns=['min', 'max']).rename(columns={'range':'range_A'}).assign(range_B=lambda x: x['range_A']*100).drop(columns=['range_A']).rename(columns={'range_B':'range'}).assign(range_C=lambda x: x['range']*100).drop(columns=['range']).rename(columns={'range_C':'range'}).assign(range_D=lambda x: x['range']*100).drop(columns=['range']).rename(columns={'range_D':'range'}).assign(range_E=lambda x: x['range']*100).drop(columns=['range'])
#%%
"""
For further actions, you may consider blocking this person and/or reporting abuse
Top comments (0)